Observed Score and True Score Equating for Multidimensional Item Response Theory under Nonequivalent Group Design

Ou Zhang
Pearson
M. David Miller
James Algina
University of Florida

What Is Test Equating?

• Equating is a <u>statistical process</u> that is used to adjust scores on different test forms so that scores on the forms are <u>comparable</u> (Kolen & Brennan, 2004).

Five Basic Requirements of Test Equating

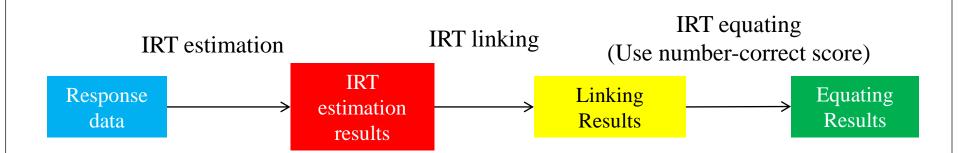
- Equal Constructs
- Equal reliability
- Symmetry

- Equity
- Population Invariance

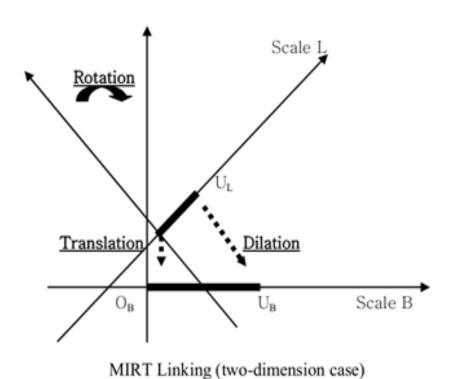
Five Basic Requirements of Test Equating

- Equal Constructs
- Equal reliability
- Symmetry
 (A → B transformation ← → B → A transformation)
- Equity
- Population Invariance

Multidimensional Item Response Theory

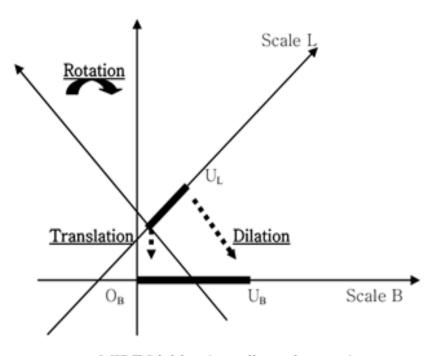

- Multidimensional Item Response Theory Model (MIRT)
 - Compensatory MIRT model (McKinley & Reckase, 1983)

$$P(x_{ij} = 1 | \boldsymbol{\theta}_j, \boldsymbol{a_i}, d_i) = \frac{e^{D(\boldsymbol{a_i'} \boldsymbol{\theta_j} + d_i)}}{1 + e^{D(\boldsymbol{a_i'} \boldsymbol{\theta_j} + d_i)}}$$


 $\mathbf{\theta}_s$ represents **multiple** ability parameters associated with each respondent, \mathbf{a}_i represents **multiple** discrimination parameters associated with each item, and d_i represents an item's location on an item response **surface**.

Common Procedure of Equating in IRT

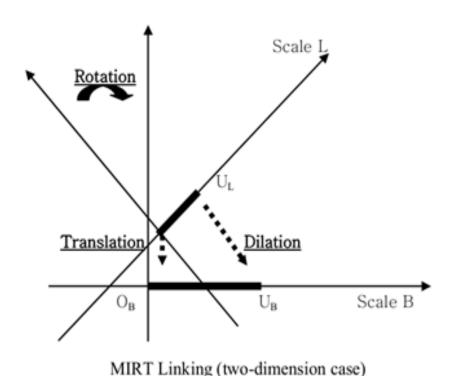
- Step 1: IRT Estimation
- Step 2: IRT Linking/Scaling Aligning
- Step 3: IRT Equating (use number-correct scores, if necessary)


MIRT Linking/Scale Aligning

• Dilation: adjust unit

(Figure adapted from Min, 2003)

MIRT Linking/Scale Aligning



MIRT Linking (two-dimension case)

- Dilation: adjust unit
- Translation: adjust original zero point

(Figure adapted from Min, 2003)

MIRT Linking/Scale Aligning

- Dilation: adjust unit
- Translation: adjust original zero point
- Rotation: adjust the entire multidimensional axis systems so that both axis systems are in the same direction.

(Figure adapted from Min, 2003)

• Are We Done after MIRT Linking/Scale Aligning?

- Are We Done after MIRT Linking/Scale Aligning?
- In the MIRT, the ability is a vector- $\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_m]$

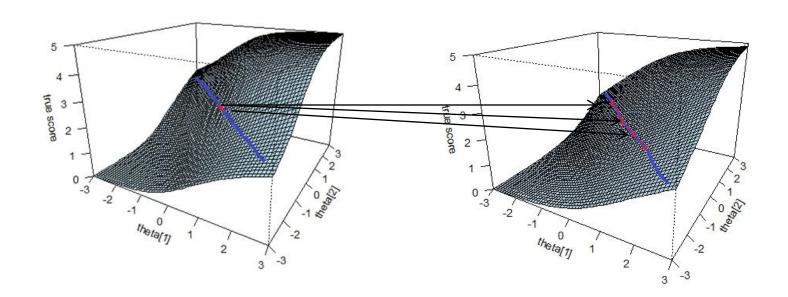
- Are We Done after MIRT Linking/Scale Aligning?
- In the MIRT, the ability is a vector- $\mathbf{\theta} = [\theta_1, \theta_2, ..., \theta_m]$
- Demonstrating equivalence between two ability vectors from different test forms is:
 - complex

- Are We Done after MIRT Linking/Scale Aligning?
- In the MIRT, the ability is a vector- $\mathbf{\theta} = [\theta_1, \theta_2, ..., \theta_m]$
- Demonstrating equivalence between two ability vectors from different test forms is:
 - complex
 - indirect

- Are We Done after MIRT Linking/Scale Aligning?
- In the MIRT, the ability is a vector- $\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_m]$
- Demonstrating equivalence between two ability vectors from different test forms is :
 - complex
 - indirect

$$\theta_1 = [1.0, 1.0]$$
 in Form A
 $\theta_2 = [1.0, 1.5]$ in Form B

Equivalent or not?


- Are We Done after MIRT Linking/Scale Aligning?
- In the MIRT, the ability is a vector- $\mathbf{\theta} = [\theta_1, \theta_2, ..., \theta_m]$
- Demonstrating equivalence between two ability vectors from different test forms is:
 - complex
 - indirect

$$\theta_1 = [1.0, 1.0]$$
 in Form A
 $\theta_2 = [1.0, 1.5]$ in Form B
Equivalent or not?

Comparability of the MIRT measure?

• Possible Violation of Test Equating's Symmetry Requirement

- Possible Violation of Test Equating's Symmetry Requirement
 - If we use the MIRT ability estimate **vector** as a measure of ability, a particular true score $(\tau(\theta) = \sum p(\theta))$ for one test form (i.e., test A) on the test characteristic surface (TCS), corresponds to <u>infinite numbers of combinations of ability vectors</u> on the other test form's TCS equiprobable contour (i.e., Test B) when both test forms are already in the same scale.

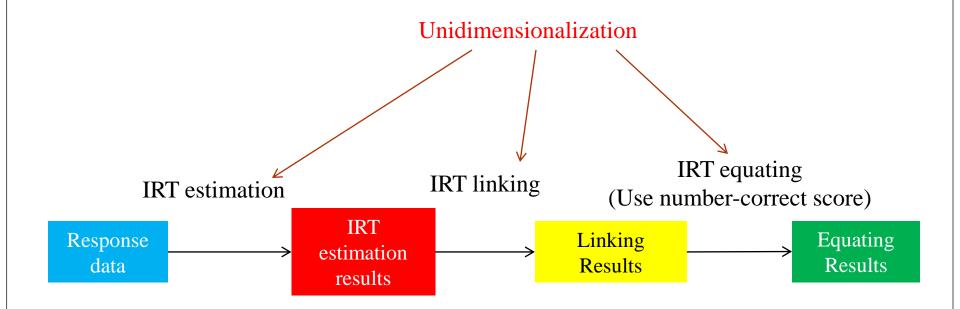
• One possible solution to make the MIRT equating available is to use the <u>number-correct score</u> or <u>true score</u> as the ability measure in MIRT.

- One possible solution to make the MIRT equating available is to use the <u>number-correct score</u> or <u>true score</u> as the ability measure in MIRT.
- When the number-correct score or true score is used as the ability measure, the MIRT ability vector is unidimensionalized.

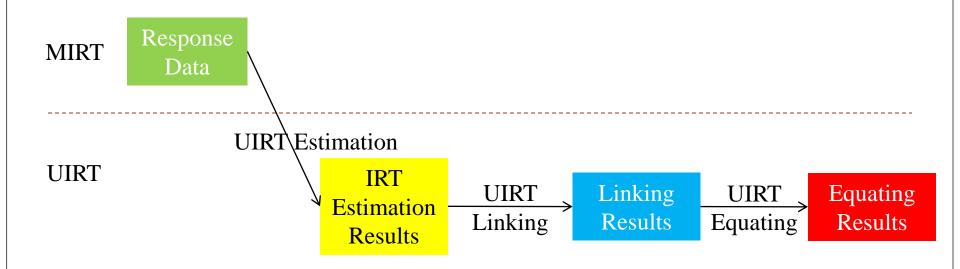
- One possible solution to make the MIRT equating available is to use the <u>number-correct score</u> or <u>true score</u> as the ability measure in MIRT.
- When the number-correct score or true score is used as the ability measure, the MIRT ability vector is unidimensionalized.
- This process is a linear combination procedure and called "<u>unidimensionalization</u>" (Zhang, 2012).

- One possible solution to make the MIRT equating available is to use the <u>number-correct score</u> or <u>scale score</u> as the ability measure in MIRT.
- When the number-correct score or scale score is used as the ability measure, the MIRT ability vector is unidimensionalized.
- This process is a linear combination procedure and called "unidimensionalization" (Zhang, 2012).
- Unidimensionalization process devectorizes the vector or multidimensional features in the MIRT framework so that the ability measures from different test forms are comparable..

- One possible solution to make the MIRT equating available is to use the <u>number-correct score</u> or <u>scale score</u> as the ability measure in MIRT.
- When the number-correct score or scale score is used as the ability measure, the MIRT ability vector is unidimensionalized.
- This process is a linear combination procedure and called "unidimensionalization" (Zhang, 2012).
- Unidimensionalization process devectorizes the vector or multidimensional features in the MIRT framework so that the ability measures from different test forms are comparable..
- Most importantly, through the process of unidimensionalization, the symmetry property of equating (Lord, 1980) for two test forms under MIRT framework is satisfied.

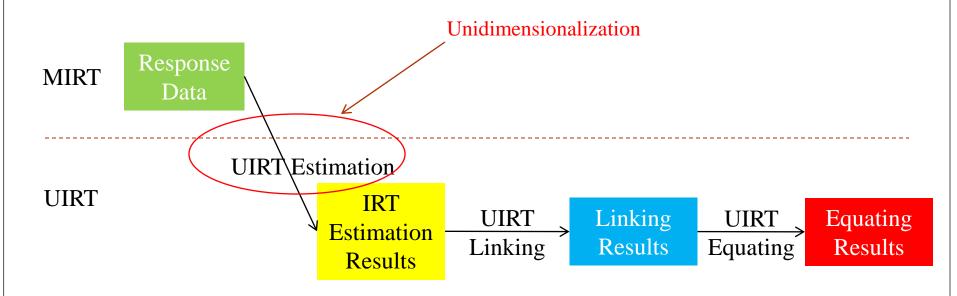

A Methodology Foundation of Unidimensionalization

Unidimensional Approximation of MIRT (Zhang & Stout, 1999)

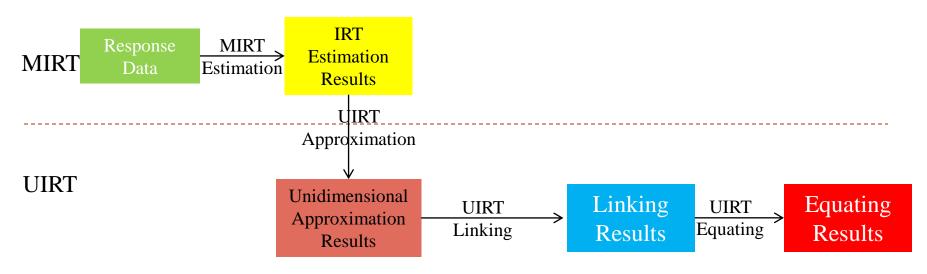

- Any set of item responses adequately modeled by a MIRT model, can be closely approximated by a unidimensional IRT model with estimated unidimensional ability composite (Θ_{α}) and estimated unidimensional item parameters ($\hat{a}_{\alpha i}$, $\hat{b}_{\alpha i}$, $\hat{T}_{\alpha i}$) (Zhang & Stout, 1999).
- The ability composite Θ_{α} of the multidimensional ability vector (i.e., $\Theta = [\theta_1, \theta_2, ..., \theta_m]$) is defined as

$$\boldsymbol{\Theta}_{\alpha} = \hat{\mathbf{a}}^{\mathrm{T}} \hat{\boldsymbol{\theta}} = \boldsymbol{\alpha}^{t} \boldsymbol{\Theta} = \sum_{i=1}^{d} \alpha_{i} \theta_{i}$$

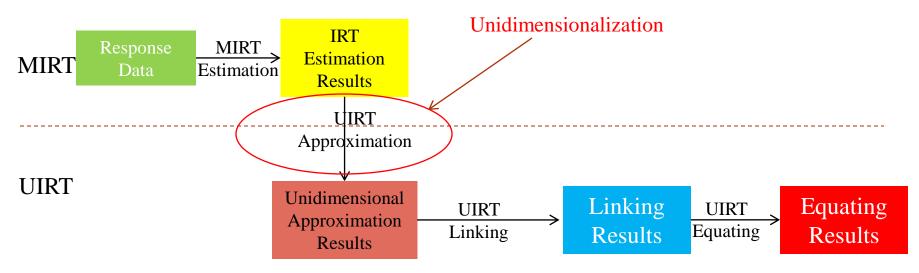
• 4 Possible Procedures of MIRT Equating



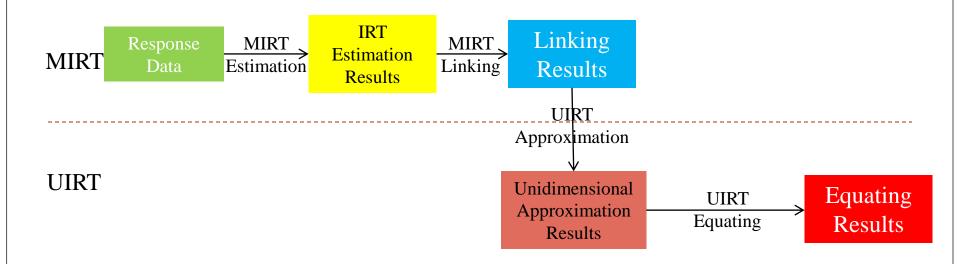
- Possible Procedure 1:
 - UIRT estimation UIRT linking UIRT equating


Unidimensionalization at IRT Estimation stage

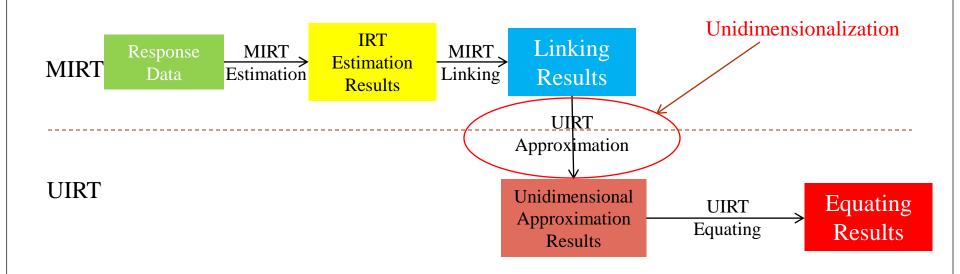
- Possible Procedure 1:
 - UIRT estimation UIRT linking UIRT equating


Unidimensionalization at IRT Estimation stage

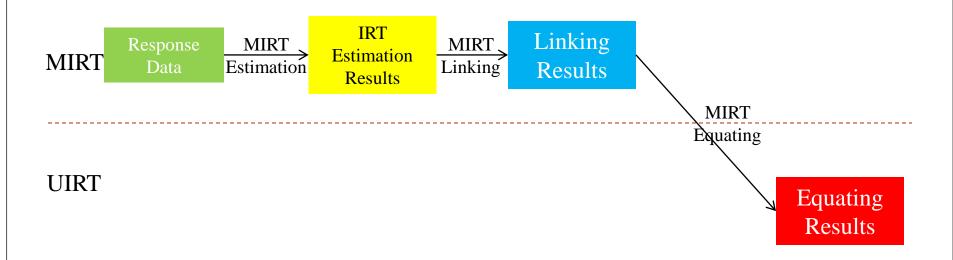
- Possible Procedure 2:
 - MIRT estimation UIRT approximation UIRT linking UIRT equating


Unidimensionalization before IRT linking

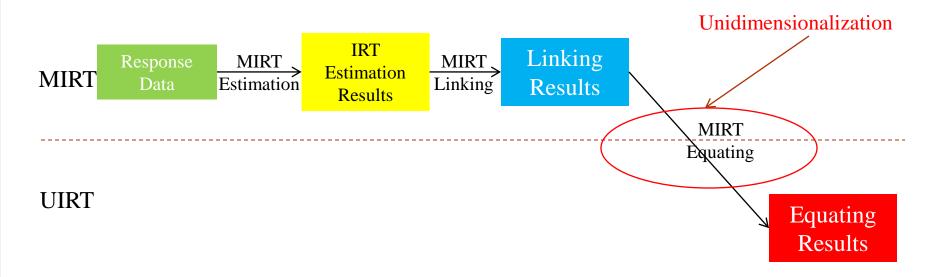
- Possible Procedure 2:
 - MIRT estimation UIRT approximation UIRT linking UIRT equating


Unidimensionalization before IRT linking

- Possible Procedure 3:
 - MIRT Estimation MIRT Linking UIRT Approximation UIRT Equating


Unidimensionalization before Test Equating stage

- Possible Procedure 3:
 - MIRT Estimation MIRT Linking UIRT Approximation UIRT Equating


Unidimensionalization before Test Equating stage

- Possible Procedure 4:
 - MIRT estimation MIRT linking MIRT Equating

Unidimensionalization at MIRT Equating stage

- Possible Procedure 4:
 - MIRT estimation MIRT linking MIRT Equating

Unidimensionalization at MIRT Equating stage

Purpose of Study

• To evaluate the performance of the MIRT equating procedures under NEAT design.

Purpose of Study

- To evaluate the performance of the MIRT equating procedures under NEAT design.
- To explore how different MIRT linking methods interacting with MIRT equating procedures (Brossman, 2010) impact on the equating results, under various testing conditions.

Purpose of Study

- To evaluate the performance of the MIRT equating procedures under NEAT design.
- To explore how different MIRT linking methods interacting with MIRT equating procedures (Brossman, 2010) impact on the equating results, under various testing conditions.
- To provide a possible guidance to educational practitioners for their future MIRT equating application.

MIRT Linking Methods used in the Study

- Min's (M) Method (2003)
- Oshima, Davey and Lee's (ODL) Method (2000)
 - The direct method (OD)
 - The Test Characteristic Function method (TCF)
 - The Item Characteristic Function method (ICF)
- Reckase and Martineau (NOP) Method (2004)
- Coefficients Obtained from These MIRT Linking Methods
 - Rotation Matrix T
 - Translation Vector m
 - Dilation Vector **K**

MIRT Equating Methods used in the Study

- MIRT Equating Methods (Brossman, 2010)
 - Full MIRT observed score equating method (MOSE)
 - (Possible procedure 4)
 - Unidimensional approximation of MIRT true score equating (ATSE)
 - (Possible procedure 3)
 - Unidimensional approximation of MIRT observed score equating (AOSE)
 - (Possible procedure 3)

MIRT Equating Methods used in the Study

- MIRT Equating Methods (Brossman, 2010)
 - Full MIRT observed score equating method (MOSE)
 - (Possible procedure 4)
 - Unidimensional approximation of MIRT true score equating (ATSE)
 - (Possible procedure 3)
 - Unidimensional approximation of MIRT observed score equating (AOSE)
 - (Possible procedure 3)

So, only <u>Procedure 3</u> and <u>Procedure 4</u> were applied in this study.

MIRT Equating Methods for This Study (cont.)

- Full MIRT Observed Score Equating Procedure
 - The full MIRT observed score equating method is a straightforward extension of UIRT observed score equating through the compound binomial recursion formula.

$$f(x) = \sum_{1} \sum_{2} ... \sum_{m} f(x \mid \mathbf{\theta}) \psi(\mathbf{\theta})$$

or

$$f(x) = \iint_{1} ... \int_{2} f(x \mid \mathbf{\theta}) \psi(\mathbf{\theta}) d\mathbf{\theta}$$

• where m is defined as the number of dimensions.

MIRT Equating Methods for This Study (cont.)

- Unidimensional Approximation of MIRT True Score Equating
- The UIRT true score equating procedure is utilized to equated composite true scores (T_{α}) on both multidimensional test forms. Thus,

$$irt_B(\tau_{\alpha Bi}) = \tau_B(\tau_{\alpha Ei}^{-1})$$

• and $func(\theta_{\alpha i}) = \tau_{\alpha A} - \sum_{i:A} p_{ij}(\theta_{\alpha i} \mid a_{\alpha j}, b_{\alpha j}, c_j)$

• Finally, the composite true score on the base form $\tau_{\alpha B}(\theta_{\alpha})$ associated with the composite true score on the equated form $\tau_{\alpha E}(\theta_{\alpha})$ can be computed as

$$\tau_{\alpha B} = \sum_{i:B} p_{ij}(\theta_{\alpha i} \mid a_{\alpha j}, b_{\alpha j}, c_j)$$

MIRT Equating Methods for This Study (cont.)

- Unidimensional Approximation of MIRT Observed Score Equating
 - The conditional distributions for the unidimensional ability composite $f(x|\theta_{\alpha})$ is determined at each composite ability level (θ_{α}) through the compound binomial recursion formula.

$$f(x) = \sum_{\theta_{\alpha}} f(x \mid \theta_{\alpha i}) \psi(\theta_{\alpha i})$$

• Then,

$$f(x) = \int_{\theta_{\alpha}} f(x \mid \theta_{\alpha i}) \psi(\theta_{\alpha i}) d\theta_{\alpha}$$

Simulation Design

- MIRT model used: M2PL (With D=1.7)
- Test length: total 40 items, 20 anchor items
- Test structure: Approximate simple structure (APSS) and complex structure (CS)
- Sample size: 2000
- Replication time: 200
- Population Design:
 - Null condition
 - Mean-difference
 - SD-difference
 - Correlation-difference
 - MIRT estimation software: TESTFACT
 - MIRT linking and MIRT equating: R

Evaluation Criteria

Weighted average equating bias (Bias_w)

$$Bias_{i} = \frac{\sum_{k=1}^{N} \left[\hat{e}_{base_{k}}(x_{i}) - e_{base}(x_{i}) \right]}{N}$$

For the entire test:
$$Bias_w = \sum_{x=1}^{39} Bias[\hat{e}_{base}(x_i)]P(x_i)$$

Weighted Average Root Mean Square Deviation (ARMSDw)

$$RMSD_{i} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left[\hat{e}_{base_{k}}(x_{i}) - e_{base}(x_{i}) \right]^{2}}$$

For the entire test:
$$ARMSD_w = \sum_{i=1}^{39} RMSD[\hat{e}_{base}(x_i)]P(x_i)$$

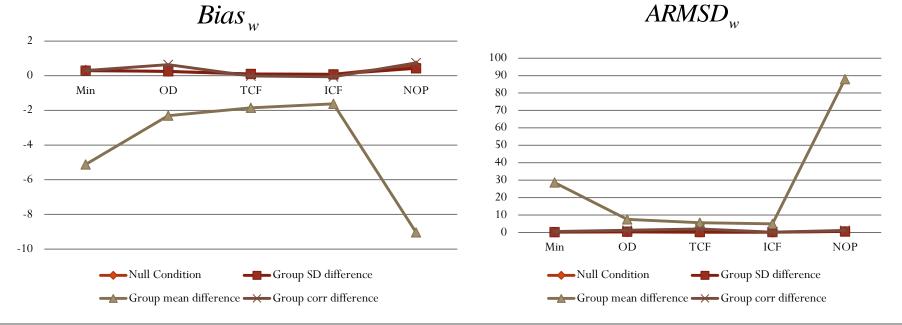
Repeated ANOVA Analysis (BIASw and ARMSDw)

StatisticFactorsSourcePartial $_{\mathcal{O}}^2$ StatisticFactorsSourcePartial $_{\mathcal{O}}^2$ ARMSD $_{w}$ Between test_str 0.0067 $Bias_{w}$ Between test_str 0.02067 Between group 0.91944 Between group 0.92557 Between test_str*group 0.02128 Between test_str*group 0.00458 Within link 0.94089 Within link 0.8497 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within link*equat 0.38335 Within link*equat 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*group 0.40483 Within link*equat*group 0.00873 Within link*equat*test_str*group 0.00429		_	•				
Between group 0.91944 Between group 0.92557 Between test_str*group 0.02128 Between test_str*group 0.00458 Within link 0.94089 Within link 0.8497 Within link*test_str 0.03362 Within link*test_str 0.00641 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*group 0.00873 Within link*equat*group 0.40483 Within link*equat*group 0.00873	Statistic	Factors Source	Partial ω^2	Statistic	Factors	Source	Partial ω^2
Between group 0.91944 Between group 0.92557 Between test_str*group 0.02128 Between test_str*group 0.00458 Within link 0.94089 Within link 0.8497 Within link*test_str 0.03362 Within link*test_str 0.00641 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*test_str 0.01727 Within equat*group 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within link*equat 0.38335 Within link*equat 0.00459 Within link*equat*test_str 0.03872 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873	ARMSD ₁₁	Between test_str	0.0067	Bias	Between	test_str	0.02067
Within link 0.94089 Within link 0.8497 Within link*test_str 0.03362 Within link*test_str 0.00641 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.00342 Within link*equat*group 0.00873	W		0.91944	W	Between	group	0.92557
Within link*test_str 0.03362 Within link*test_str 0.00641 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*group 0.58711 Within equat*group 0.01469 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.00342 Within link*equat*group 0.00873		Between test_str*group	0.02128		Between	test_str*group	0.00458
Within link*test_str 0.03362 Within link*test_str 0.00641 Within link*group 0.94122 Within link*group 0.88045 Within link*test_str*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat 0.47878 Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*group 0.00873		Within link	0.94089		Within	link	0.8497
Within link*group 0.94122 Within link*group 0.15599 Within link*test_str*group 0.06019 Within equat 0.57653 Within equat Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within link*test_str	0.03362		Within	link*test_str	
Within equat within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within link*group	0.94122		Within		0.88045
Within equat*test_str 0.01727 Within equat*test_str 0.01469 Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within link*test_str*group	0.15599		Within	link*test_str*group	0.06019
Within equat*group 0.58711 Within equat*group 0.46236 Within equat*test_str*group 0.02497 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*group 0.00873 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within equat	0.57653		Within	equat	0.47878
Within equat*test_str*group 0.02497 Within equat*test_str*group 0.00459 Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.003872 Within link*equat*test_str 0.00342 Within link*equat*group 0.00873		Within equat*test_str	0.01727		Within	equat*test_str	0.01469
Within link*equat 0.38335 Within link*equat 0.00185 Within link*equat*test_str 0.03872 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within equat*group	0.58711		Within	equat*group	0.46236
Within link*equat*test_str 0.03872 Within link*equat*test_str 0.00342 Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within equat*test_str*group	0.02497		Within	equat*test_str*group	0.00459
Within link*equat*group 0.40483 Within link*equat*group 0.00873		Within link*equat	0.38335		Within	link*equat	0.00185
		Within link*equat*test_str	0.03872		Within	link*equat*test_str	0.00342
Within link*equat*test_str*group 0.04714 Within link*equat*test_str*group 0.00429		Within link*equat*group	0.40483		Within	link*equat*group	0.00873
	-	Within link*equat*test_str*group	0.04714		Within	link*equat*test_str*group	0.00429

• The largest effect size: linking method * group distribution

Repeated ANOVA Analysis (*BIASw* and *ARMSDw*)

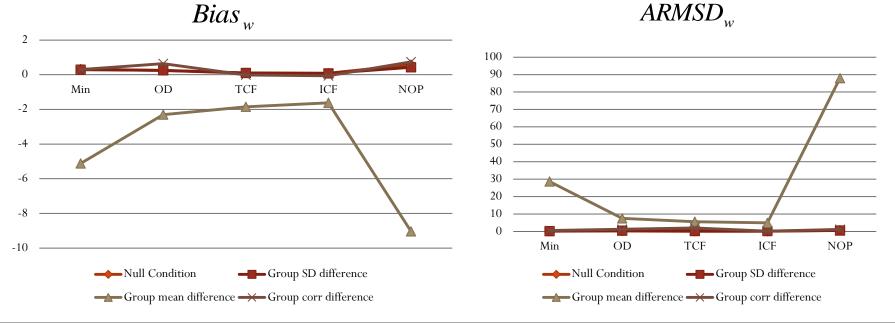
Statistic	Factors	Source	Partial ω^2	Statistic	Factors	Source	Partial ω^2
ARMSD _w	Between	test_str	0.0067	$Bias_w$	Between	test_str	0.02067
W	Between	group	0.91944	W	Between	group	0.92557
	Between	test_str*group	0.02128		Between	test_str*group	0.00458
	Within	link	0.94089		Within	link	0.8497
	Within	link*test_str	0.03362		Within	link*test_str	0.00641
	Within	link*group	0.94122		Within	link*group	0.88045
	Within	link*test_str*group	0.15599		Within	link*test_str*group	0.06019
	Within	equat	0.57653		Within	equat	0.47878
	Within	equat*test_str	0.01727		Within	equat*test_str	0.01469
	Within	equat*group	0.58711		Within	equat*group	0.46236
	Within	equat*test_str*group	0.02497		Within	equat*test_str*group	0.00459
	Within	link*equat	0.38335		Within	link*equat	0.00185
	Within link*equat*test_str Within link*equat*group				Within	link*equat*test_str	0.00342
					Within	link*equat*group	0.00873
	Within	link*equat*test_str*group	0.04714		Within	link*equat*test_str*group	0.00429


- The largest effect size: linking method * group distribution
- The 2nd largest effect size: equating method * group distribution

Repeated ANOVA Analysis (*BIASw* and *ARMSDw*)

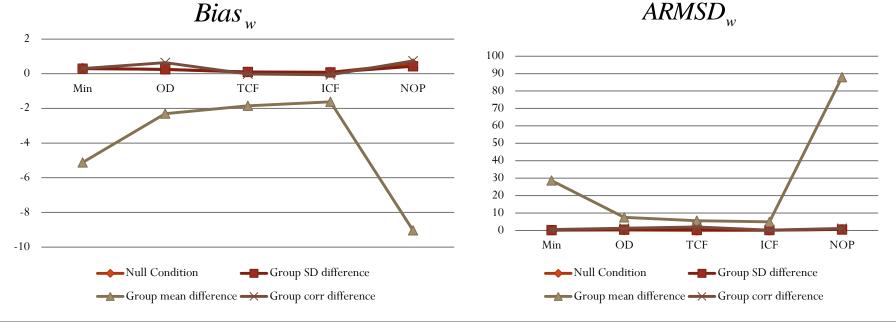
Statistic	Factors	Source	Partial ω^2	Statistic	Factors	Source	Partial ω^2
ARMSD _w	Between	test_str	0.0067	$Bias_{w}$	Between	test_str	0.02067
W	Between	group	0.91944	W	Between	group	0.92557
	Between	test_str*group	0.02128		Between	test_str*group	0.00458
	Within	link	0.94089		Within	link	0.8497
	Within	link*test_str	0.03362		Within	link*test_str	0.00641
	Within	link*group	0.94122		Within	link*group	0.88045
	Within	link*test_str*group	0.15599		Within	link*test_str*group	0.06019
	Within	equat	0.57653		Within	equat	0.47878
	Within	equat*test_str	0.01727		Within	equat*test_str	0.01469
	Within	equat*group	0.58711		Within	equat*group	0.46236
	Within	equat*test_str*group	0.02497		Within	equat*test_str*group	0.00459
	Within	link*equat	0.38335		Within	link*equat	0.00185
	Within	link*equat*test_str	0.03872		Within	link*equat*test_str	0.00342
	Within	link*equat*group	0.40483		Within	link*equat*group	0.00873
	Within	link*equat*test_str*group	0.04714		Within	link*equat*test_str*group	0.00429

- The largest effect size: linking method * group distribution
- The 2nd largest effect size: equating method * group distribution
- Test structure and all the interactions including test structurevery small effect size


• Comparison for the Linking Method x Group Distribution Interaction

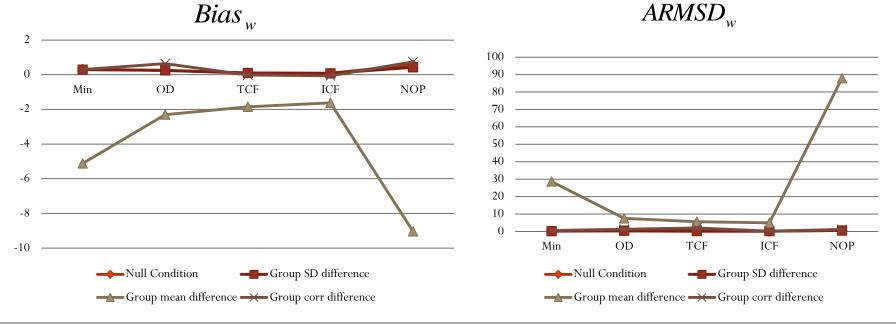
Bias	Min	OD	TCF	ICF	NOP	ARMSD	Min	OD	TCF	ICF	NOP
Null Condition	0.32926	0.24153	0.09908	0.08588	0.58308		0.23089	0.28789	0.11543	0.11071	0.69485
Group SD difference	0.29248	0.25659	0.10186	0.07712	0.42949		0.20884	0.48575	0.26935	0.26063	0.55671
Group mean difference	-5.1191	-2.3007	-1.8481	-1.6189	-9.0351		28.6865	7.52435	5.64556	4.9614	87.9546
Group corr difference	0.29875	0.64432	-0.015	-0.0637	0.74563		0.54088	1.33343	2.00157	0.19166	1.24462

• Overall: TCF and ICF performed best across all group distribution conditions;

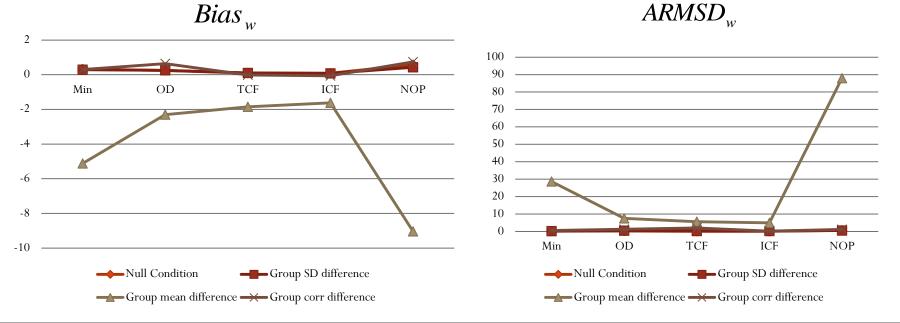

• Comparison for the Linking Method x Group Distribution Interaction

Bias	Min	OD	TCF	ICF	NOP	ARMSD	Min	OD	TCF	ICF	NOP
Null Condition	0.32926	0.24153	0.09908	0.08588	0.58308		0.23089	0.28789	0.11543	0.11071	0.69485
Group SD difference	0.29248	0.25659	0.10186	0.07712	0.42949		0.20884	0.48575	0.26935	0.26063	0.55671
Group mean difference	-5.1191	-2.3007	-1.8481	-1.6189	-9.0351		28.6865	7.52435	5.64556	4.9614	87.9546
Group corr difference	0.29875	0.64432	-0.015	-0.0637	0.74563		0.54088	1.33343	2.00157	0.19166	1.24462

 Overall: TCF and ICF performed best across all group distribution conditions; OD and M methods' performances are next;

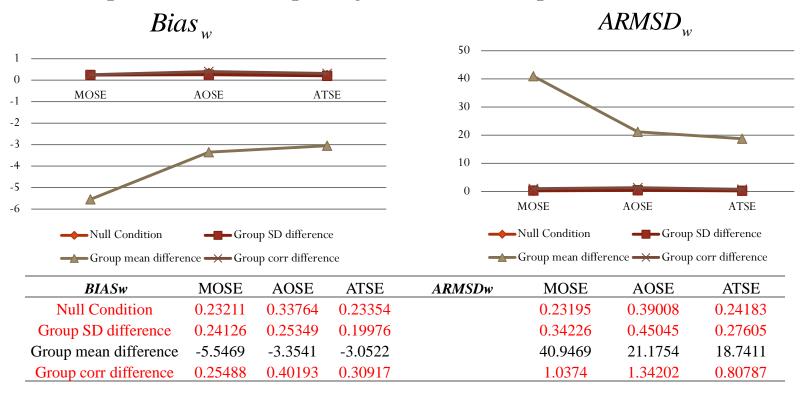

• Comparison for the Linking Method x Group Distribution Interaction

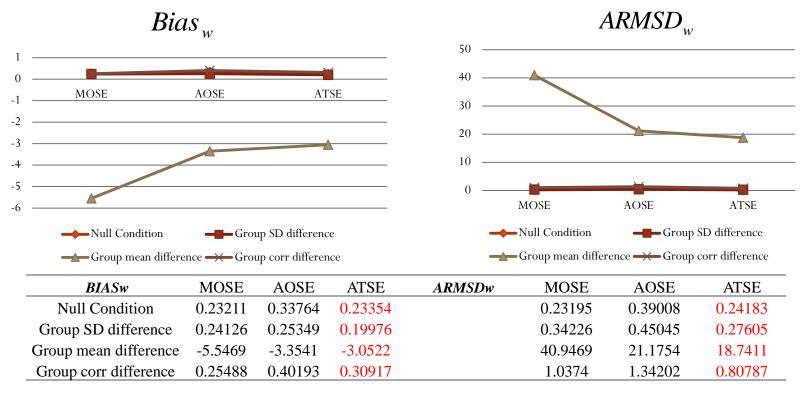
Bias	Min	OD	TCF	ICF	NOP	ARMSD	Min	OD	TCF	ICF	NOP
Null Condition	0.32926	0.24153	0.09908	0.08588	0.58308		0.23089	0.28789	0.11543	0.11071	0.69485
Group SD difference	0.29248	0.25659	0.10186	0.07712	0.42949		0.20884	0.48575	0.26935	0.26063	0.55671
Group mean difference	-5.1191	-2.3007	-1.8481	-1.6189	-9.0351		28.6865	7.52435	5.64556	4.9614	87.9546
Group corr difference	0.29875	0.64432	-0.015	-0.0637	0.74563		0.54088	1.33343	2.00157	0.19166	1.24462


 Overall: TCF and ICF performed best across all group distribution conditions; OD and M methods' performances are next; NOP method performed worst among all 5 Linking methods.

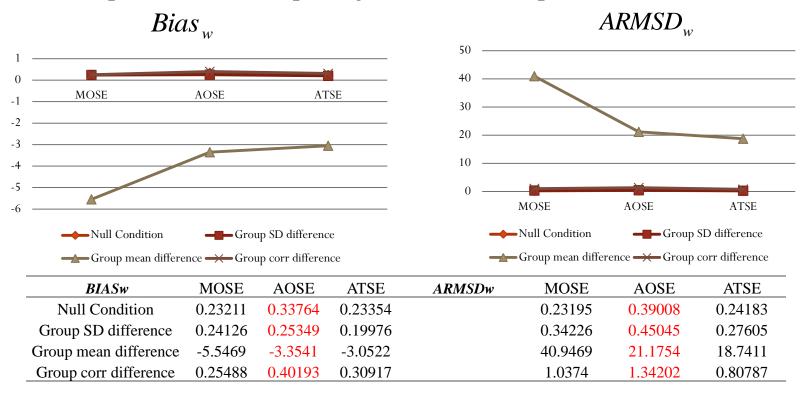
• Comparison for the Linking Method x Group Distribution Interaction

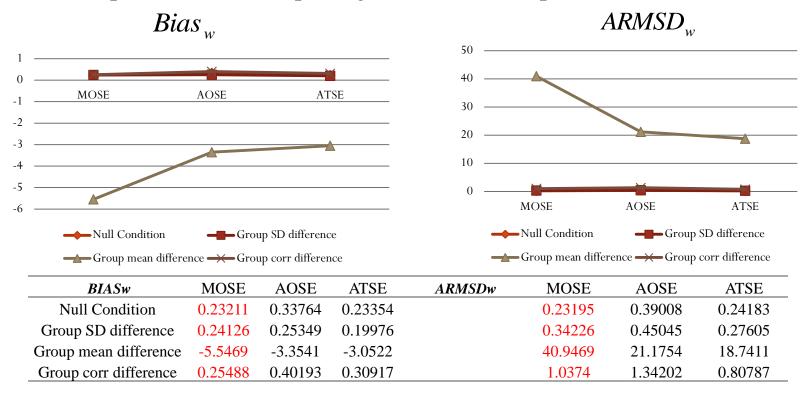
Bias	Min	OD	TCF	ICF	NOP A	ARMSD	Min	OD	TCF	ICF	NOP
Null Condition	0.32926	0.24153	0.09908	0.08588	0.58308		0.23089	0.28789	0.11543	0.11071	0.69485
Group SD difference	0.29248	0.25659	0.10186	0.07712	0.42949		0.20884	0.48575	0.26935	0.26063	0.55671
Group mean difference	-5.1191	-2.3007	-1.8481	-1.6189	-9.0351		28.6865	7.52435	5.64556	4.9614	87.9546
Group corr difference	0.29875	0.64432	-0.015	-0.0637	0.74563		0.54088	1.33343	2.00157	0.19166	1.24462

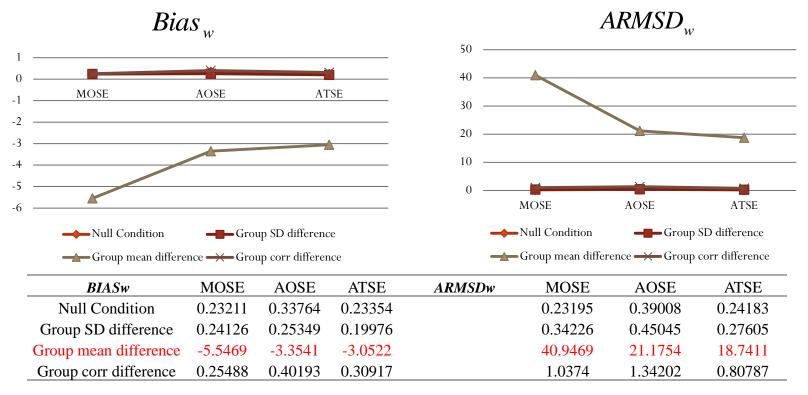

• Under the null condition, group SD difference, group corr difference, five MIRT linking methods have similar equating performances


Bias	Min	OD	TCF	ICF	NOP	ARMSD	Min	OD	TCF	ICF	NOP
Null Condition	0.32926	0.24153	0.09908	0.08588	0.58308		0.23089	0.28789	0.11543	0.11071	0.69485
Group SD difference	0.29248	0.25659	0.10186	0.07712	0.42949		0.20884	0.48575	0.26935	0.26063	0.55671
Group mean difference	-5.1191	-2.3007	-1.8481	-1.6189	-9.0351		28.6865	7.52435	5.64556	4.9614	87.9546
Group corr difference	0.29875	0.64432	-0.015	-0.0637	0.74563		0.54088	1.33343	2.00157	0.19166	1.24462

- Under the null condition, group SD difference, group corr difference, five MIRT linking methods have similar equating performances
- Under the group mean difference condition, the magnitude of means of *BIASw* and *ARMSDw* for all five MIRT linking methods drastically increased. NOP method performed worst among all 5 Linking methods.


• Comparison for the Equating Method x Group Distribution Interaction


• Overall: All three MIRT equating methods performed comparatively well (no group mean difference)


- Overall: All three MIRT equating methods performed comparatively well (no group mean difference)
- Equating performance: ATSE > AOSE > MOSE

- Overall: All three MIRT equating methods performed comparatively well (no group mean difference)
- Equating performance: ATSE > AOSE > MOSE

- Overall: All three MIRT equating methods performed comparatively well (no group mean difference)
- Equating performance: ATSE > AOSE > MOSE

- Overall: All three MIRT equating methods performed comparatively well (no group mean difference)
- Equating performance: ATSE > AOSE > MOSE
- Under the group mean difference condition, the magnitude of means of *BIASw* and *ARMSDw* for all three MIRT equating methods drastically increased.

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.
 - Group correlation factor and standard deviation factor had a similar level of effect, but not as large as the group mean factor.

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.
 - Group correlation factor and standard deviation factor had a similar level of effect, but not as large as the group mean factor.
- Linking
 - MIRT equating procedures performed best under the TCF and the ICF linking methods (group distribution differences)

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.
 - Group correlation factor and standard deviation factor had a similar level of effect, but not as large as the group mean factor.

Linking

- MIRT equating procedures performed best under the TCF and the ICF linking methods (group distribution differences)
- NOP method had the lowest robustness when there were group distribution shape differences.

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.
 - Group correlation factor and standard deviation factor had a similar level of effect, but not as large as the group mean factor.

Linking

- MIRT equating procedures performed best under the TCF and the ICF linking methods (group distribution differences)
- NOP method had the lowest robustness when there were group distribution shape differences.
- MIRT equating procedures performed: TCF ICF > OD M > NOP

- Test Structure and Group distribution
 - Test structure and all the interactions including test structure had a very small effect on equating results.
 - Group mean factor influenced equating results the most.
 - Group correlation factor and standard deviation factor had a similar level of effect, but not as large as the group mean factor.

Linking

- MIRT equating procedures performed best under the TCF and the ICF linking methods (group distribution differences)
- NOP method had the lowest robustness when there were group distribution shape differences.
- MIRT equating procedures performed: TCF ICF > OD M > NOP

Equating

• ATSE procedure demonstrated, overall, the best equating performance as compared with the other two equating procedures (i.e., MOSE and AOSE) across all group distribution conditions.

• The first simulation study to evaluate the performance of different MIRT equating procedures

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors
- Comparison between MIRT equating methods and UIRT equating methods

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors
- Comparison between MIRT equating methods and UIRT equating methods
- Comparison between MIRT equating methods and observed score equating methods

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors
- Comparison between MIRT equating methods and UIRT equating methods
- Comparison between MIRT equating methods and observed score equating methods
- IRT software Choice-TESTFACT, Mplus, IRTPRO, BMIRT (rotation)

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors
- Comparison between MIRT equating methods and UIRT equating methods
- Comparison between MIRT equating methods and observed score equating methods
- IRT software Choice-TESTFACT, Mplus, IRTPRO, BMIRT (rotation)
- No optimization is involved in the translation in current MIRT linking methods (may not work effectively) New MIRT linking methods with translation optimization are needed

- The first simulation study to evaluate the performance of different MIRT equating procedures
- More comprehensive factors
- Comparison between MIRT equating methods and UIRT equating methods
- Comparison between MIRT equating methods and observed score equating methods
- IRT software Choice-TESTFACT, Mplus, IRTPRO, BMIRT (rotation)
- No optimization is involved in the translation in current MIRT linking methods (may not work effectively) New MIRT linking methods with translation optimization are needed
- Orthogonal rotation vs. oblique rotation in MIRT linking influencing MIRT equating results needs further investigation

Key References

- Brossman, B. G. (2010). Observed score and true score equating procedures for multidimensional item response theory. *Unpublished doctoral dissertation*, University of Iowa. http://ir.uiowa.edu/etd/469.
- Davey, T. C., Oshima, T. C., & Lee, K. (1996). Linking multidimensional item calibrations. *Applied Psychological Measurement*, 20, 405-416.
- Li, Y. H., & Lissitz, R. W. (2000). An evaluation of the accuracy of multidimensional IRT linking. *Applied Psychological Measurement*, *24*, 115-138.
- Min, K. S. (2003). The impact of scale dilation on the quality of the linking of multidimensional item response theory calibrations. *Unpublished Dissertation*, Michigan State University, East Lansing, MI.
- Oshima, T. C., Davey, T. C., & Lee, K. (2000). Multidimensional linking: Four practical approaches. *Journal of Educational Measurement*, *37*, 357-373.
- Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.
- Simon, M. K. (2008). Comparison of concurrent and separate multidimensional IRT linking of item parameters. *Unpublished Dissertation*, University of Minnesota.

Thank you!

ou.zhang@pearson.com